Incorporating Survey Weights into Binary and Multinomial Logistic Regression Models
نویسندگان
چکیده
منابع مشابه
Robust Logistic and Probit Methods for Binary and Multinomial Regression.
In this paper we introduce new robust estimators for the logistic and probit regressions for binary, multinomial, nominal and ordinal data and apply these models to estimate the parameters when outliers or inluential observations are present. Maximum likelihood estimates don't behave well when outliers or inluential observations are present. One remedy is to remove inluential observations from ...
متن کاملMultinomial logistic regression
Multinomial logistic regression is the extension for the (binary) logistic regression when the categorical dependent outcome has more than two levels. For example, instead of predicting only dead or alive, we may have three groups, namely: dead, lost to follow-up, and alive. In the analysis to follow, a reference group has to be chosen for comparison, the appropriate group would be the alive, i...
متن کاملMultinomial Logistic Regression Ensembles
This article proposes a method for multiclass classification problems using ensembles of multinomial logistic regression models. A multinomial logit model is used as a base classifier in ensembles from random partitions of predictors. The multinomial logit model can be applied to each mutually exclusive subset of the feature space without variable selection. By combining multiple models the pro...
متن کاملBinary logistic regression with stratified survey data
Standard inference techniques are only valid if the design is ignorable. Two approaches that take the design into account are compared using binary logistic regression. The modelbased approach includes relevant design variables as independents and the designbased approach use design weights. The approaches are exemplified using a cross-sectional stratified mail survey, where associations betwee...
متن کاملMultinomial Logistic Regression with SPSS
Subjects were engineering majors recruited from a freshman-level engineering class from 2007 through 2010. Data were obtained for 256 students. The outcome variable of interest was retention group: Those who were still active in our engineering program after two years of study were classified as persisters. Those who were no longer in our engineering program were classified as having left in go...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science Journal of Applied Mathematics and Statistics
سال: 2015
ISSN: 2376-9491
DOI: 10.11648/j.sjams.20150306.13